Pine Research Instrumentation offers a flexible line of portable USB potentiostats. Our WaveNow, WaveNano, and WaveNowSV potentiostat/galvanostat systems break with the past, replacing traditional stationary benchtop instruments with lightweight, portable, and powerful alternatives. These systems are a solid choice for research, teaching, and industrial applications.

affordable.
At a fraction of the cost of most other comparable systems, these potentiostats give you exactly what you need without breaking your budget. Prices are so low, in fact, that you will be asking yourself why you did not buy more of them. For the perfect way to outfit your entire lab with multiple potentiostats, contact us today for a quantity discount.

flexible.
At only 200 grams and just larger than a modern smartphone, this is the ideal potentiostat for flexible uses. It connects to your laptop or desktop PC via a standard USB cable. The size and ease of interface make this system perfect for use on the bench, in a hood, secured in a glovebox, and even for remote applications with the optional battery pack.

capable.
Our potentiostats perform all the classical electroanalytical techniques, which include: voltammetric, galvanostatic, and hydrodynamic methods. Once you have collected your results, our versatile AfterMath data analysis software helps you manage your data, create graphs and prepare reports. For nearly any application, the WaveNow is a solid choice.
Standard Electrochemical Methods:

Basic Methods
- Original Chemical Potential (ECP)
- Original Galvanostat

Potential Methods
- Cyclic Voltammetry (CV)
- Linear Sweep Voltammetry (LSV)
- Amperometric Waveform (AW)
- Absolute Electrochemistry (AE)

Galvanostatic Methods
- Change Current (CC)
- Change Current (CC)
- Galvanostatic Potentiometry (GP)
- Electrochemical Impedance (EIS)

Voltammetric Methods
- Amperometry (A)
- Cyclic Voltammetry (CV)
- Square-Wave Voltammetry (SWV)
- Linear Sweep Voltammetry (LSV)

Sensing Techniques
- Amperometric (A)
- Conductimetric (C)
- Voltammetric (V)
- Chronopotentiometric (CP)

The Following Information Applies to the WaveNow™, WaveNow™, and WaveNano™:

Measured Current
- Practical Range: 0.10 nA to 100 nA
- Accuracy: ±0.2% setting; ±0.05% of range
- ADC Input: 16 bits
- Leakage Current: 10 pA at 25°C

Power Amplifier (CE control amplifier)
- Compliance Voltage: > ±12.5 V
- Output Current: ±100 mA (maximum)
- Speed Settings: 3
- Unity Gain Bandwidth: > 20 kHz (on “fast” speed)
- Rise Time: 180 V/msec (on “fast” speed)

Temperature Range: 10°C to 40°C
Humidity Range: 90% RH maximum, non-condensing

Control Modes and Connections
- Operating Modes: potential (PG), galvanostat (GAL), open circuit potential (OCP)
- Cell Connections: working (K1), counter (C), reference (RE), and working sense (KISENSE)
- Signal Ground Configuration: working electrode connects to signal ground through current range resistor; signal ground connects to user ground
- IF Compensation: No

Additional Output Signals
- Digital On/Off Signal: open drain (TL compatible)
- Output Impedance: < 10 Ohms

Data Acquisition
- Resolution: 1.2 mV per DAC bit (12 bit)
- Sample Rate (min): 1000 Hz
- Sample Rate (max): 10 V/sec

External Ports
- Cell Port: HD-15 female connector
- Interface Port: USB type-A connector
- Control Port: 3-pin header connector

Accessories
- Calibration Tools: HD-15 loopback card (included)
- Dummy Cell: external dummy cell (included)
- Cell Cable: various designs available separately

Measuring Methods
- Original Chemical Potential (ECP)
- Original Galvanostat
- Cyclic Voltammetry (CV)
- Linear Sweep Voltammetry (LSV)
- Amperometric Waveform (AW)
- Absolute Electrochemistry (AE)

Galenostatic Methods
- Change Current (CC)
- Change Current (CC)
- Galvanostatic Potentiometry (GP)
- Electrochemical Impedance (EIS)

Voltammetric Methods
- Amperometry (A)
- Cyclic Voltammetry (CV)
- Square-Wave Voltammetry (SWV)
- Linear Sweep Voltammetry (LSV)

Sensing Techniques
- Amperometric (A)
- Conductimetric (C)
- Voltammetric (V)
- Chronopotentiometric (CP)