Related Links: Hydrodynamic Voltammetry Theory, MSR User Manual, CPR User Manual
10.7 – References
Basic Information about Electroanalytical Chemistry
1. PT Kissinger and WR Heineman, Laboratory techniques in electroanalytical chemistry, Marcel Dekker, New York (1996).
2. AJ Bard and LR Faulkner, Electrochemical Methods-Fundamentals and Applications, 2nd Edition, John Wiley & Sons, New York (2000) Chapter 9.
Examples of Various Types of Hydrodynamic Voltammetry
3. DC Johnson, SG Weber, AM Bond, RM Wightman, RE Shoup and IS Krull, Electroanalytical voltammetry in flowing solutions, Analytica Chimica Acta 180 (1986) 187-250.
4. H Gunasingham and B Fleet, Wall-jet electrode in continuous monitoring voltammetry, Analytical Chemistry 55 (1983) 1409-1414.
5. JV Macpherson and PR Unwin, Hydrodynamic Modulation Voltammetry with an Oscillating Microjet Electrode, Analytical Chemistry 71 (1999) 4642.
6. IE Henley, K Yunus and AC Fisher, Voltammetry under Microfluidic Control: Computer-Aided Design Development and Application of Novel Microelectrochemical Reactors, J. of Physical Chemistry B 107 (2003) 3878-3884.
7. KW Pratt and DC Johnson, Vibrating wire electrodes—I. Literature review, design and evaluation, Electrochemica Acta 27 (1982) 1013-1021.
8. C Hagan and LA Coury, Comparison of hydrodynamic voltammetry implemented by sonication to a rotating disk electrode, Analytical Chemistry 66 (1994) 399-405.
Seminal Publications Describing Rotating Electrodes
9. VG Levich, Physicochemical Hydrodynamics, Prentice-Hall, Upper Saddle River NJ (1962).
10. S. Bruckenstein and T. Nagai, The Rotated, Mercuy-Coated Platinum Electrode, Anal. Chem. 33 (1961) 1201.
11. Z Galus, C Olson, HY Lee and RN Adams Rotating Disk Electrodes, Anal. Chem. 34 (1962) 164.
12. WJ Albery and RP Bell, Kinetics of Dissociation of Weak Acids Measured by a Rotating Platinum Disc Electrode , Proc. Chem. Soc. (1963) 169.
13. S Bruckenstein and B Miller, Unraveling Reactions with Rotating Electrodes, Acc. Chem. Res. 10 (1977) 54-61.
14. S Treimer, A Tanga and DC Johnson, Consideration of the Application of Koutecky-Levich Plots in the Diagnoses of Charge-Transfer Mechanisms at Rotated Disk Electrodes, Electroanalysis 14 (2002) 165-171.
15. EF Dalton, Historical Origins of the Rotating Ring-Disk Electrode, Electrochem. Soc. Interface 23 (2016) Issue 3, 50-59.
16. AN Frumkin, LN Nekrasov, VG Levich, and YB Ivanov, The Use of a Rotating Ring-Disk Electrode for Studying Intermediate Products of Electrochemical Reactions, J. Electroanal. Chem. 1 (1959) 84.
17. LN Nekrasov and NP Berezina, The Electrolytic Reduction of Copper on a Disc-Ring Electrode, Dokl. Akad. Nauk SSSR 142 (1961) 885.
18. LN Nekrasov and L Müller, Study of the Cathodic Reduction of Oxygen on Platinum in Alkaline Solutions Using a Rotating Disk and Ring Electrode, Dokl. Akad. Nauk SSSR 149 (1963) 1107.
19. L Müller and LN Nekrasov, Study of the Electroreduction of Oxygen on Smooth Platinum in Acid Solutions by the Method of a Revolving Disc Electrode with a Ring, Dokl. Akad. Nauk SSSR 154 (1964) 437.
20. S. Bruckenstein, The Relations Between the Limiting Diffusion Currents at Rotating Disk, Ring, and Ring-Disk Electrodes, Elektrokhimiya 2 (1966) 1085.
21. WJ Albery and ML Hitchman, Ring-Disc Electrodes, Clarendon Press, Oxford (1971).
22. WJ Albery, Ring-disc electrodes. Part 1.— A new approach to the theory, Trans. Faraday Soc. 62 (1966) 1915-1919.
23. WJ Albery and S Bruckenstein, Ring-disc electrodes. Part 2.— Theoretical and experimental collection efficiencies, Trans. Faraday Soc. 62 (1966) 1920-1931.
24. WJ Albery, S Bruckenstein and DT Napp, Ring-disc electrodes. Part 3.— Current-voltage curves at the ring electrode with simultaneous currents at the disc electrode, Trans. Faraday Soc. 62 (1966) 1932-1937.
25. WJ Albery, S Bruckenstein and DC Johnson, Ring-disc electrodes. Part 4.— Diffusion layer titration curves, Trans. Faraday Soc. 62 (1966) 1938-1945.
26. WJ Albery, Ring-disc electrodes. Part 5.— First-order kinetic collection efficiencies at the ring electrode, Trans. Faraday Soc. 62 (1966) 1946-1954.
27. M Eisenberg, CW Tobias and CR Wilke, Ionic Mass Transfer and Concentration Polarization at Rotating Electrodes, Journal of the Electrochemical Society 101 (1954) 306.
28. M Eisenberg, CW Tobias and CR Wilke, Chem. Eng. Progr. Symp. Ser. 51 (1955) 1.
29. DR Gabe, Rotating Cylinder Electrode, J. Appl. Electrochem. 4 (1974) 91.
30. DR Gabe and DJ Robinson, Mass Transfer in a Rotating Cylinder Cell–I. Laminar Flow, Electrochemica Acta 17 (1972) 1121.
31. DR Gabe and DJ Robinson, Mass Transfer in a Rotating Cylinder Cell–II. Turbulent Flow, Electrochemica Acta 17 (1972) 1129.
32. DR Gabe and FC Walsh, The Rotating Cylinder Electrode: A Review of Development, J. Appl. Electrochem. 13 (1983) 3.
Studies of Oxygen Reduction Reaction (ORR) Kinetics using Rotating Disk and Ring-Disk Electrodes (RDE and RRDE)
33. Y Garsany, OA Baturina, KE Swider-Lyons and SS Kocha, Experimental Methods for Quantifying the Activity of Platinum Electrocatalysts for the Oxygen Reduction Reaction, Analytical Chemistry 82 (2010) 6321-6328.
34. HA Gasteiger, SS Kocha, B Sompalli and FT Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental 56 (2005) 9-35.
35. UA Paulus, A Wokauna, GG Scherera, TJ Schmidt, V Stamenkovic, NM Markovic and PN Ross, Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes, Electrochimica Acta 47 (2002) 3787-3798.
36. UA Paulus, TJ Schmidt, HA Gasteiger and RJ Behm, Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study, J. of Electroanalytical Chem. 495 (2001) 134-145.
37. TJ Schmidt, UA Paulus, HA Gasteiger and RJ Behm, The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions, J. of Electroanalytical Chem. 508 (2001) 41-47.
38. G Brisard, N Bertranda, PN Ross and NM Markovic, Oxygen reduction and hydrogen evolution–oxidation reactions on Cu(hkl) surfaces, J. of Electroanalytical Chem. 480 (2000) 219-224.
39. L Geniès, R Faure and R Durand, Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media, Electrochimica Acta 44 (1998) 1317-1327.
40. E Higuchia, H Uchidab and M Watanabe, Effect of loading level in platinum-dispersed carbon black electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode, J. of Electroanalytical Chem. 583 (2005) 69-76.
41. ZD Weia, SH Chanb, LL Lia, HF Caia, ZT Xiab and CX Sunc, Electrodepositing Pt on a Nafion-bonded carbon electrode as a catalyzed electrode for oxygen reduction reaction, Electrochimica Acta 50 (2005) 2279-2287.
42. S Marcotte, D Villers, N Guillet, L Roué and JP Dodelet, Electroreduction of oxygen on Co-based catalysts: determination of the parameters affecting the two-electron transfer reaction in an acid medium, Electrochimica Acta 50 (2004) 179-188.
43. S Durón, R Rivera-Noriega, P Nkeng, G Poillerat and O Solorza-Feria, Kinetic study of oxygen reduction on nanoparticles of ruthenium synthesized by pyrolysis of Ru3(CO)12, J. of Electroanalytical Chem. 566 (2004) 281-289.
Applications of the Rotating Cylinder Electrode (RCE)
44. DR Gabe and FC Walsh, Enhanced Mass Transfer at the Rotating Cylinder Electrode–I. Characterization of a Smooth Cylinder and Roughness Development in Solutions of Constant Concentration, J. Appl. Electrochem. 14 (1984) 555.
45. DR Gabe and FC Walsh, Enhanced Mass Transfer at the Rotating Cylinder Electrode–II. Development of Roughness for Solutions of Decreasing Concentration, J. Appl. Electrochem. 14 (1984) 565.
46. DR Gabe and FC Walsh, Enhanced Mass Transfer at the Rotating Cylinder Electrode–III. Pilot and Production Plant Experience, J. Appl. Electrochem. 15 (1985) 807.
47. DR Gabe and PA Makanjuola, Enhanced Mass Transfer Using Roughened Rotating Cylinder Electrodes in Turbulent Flow, J. Appl. Electrochem. 17 (1987) 370.
48. DR Gabe, GD Wilcox, J Gonzalez-Garcia and FC Walsh, The Rotating Cylinder Electrode: Its Continued Development and Application, J. Appl. Electrochem. 28 (1998) 759.
49. G Kear, BD Barker, K Stokes and FC Walsh, Flow Influenced Electrochemical Corrosion of Nickel Aluminum Bronze – Part I. Cathodic Polarization, J. Appl. Electrochem. 34 (2004) 1235.
50. G Kear, BD Barker, K Stokes and FC Walsh, Flow Influenced Electrochemical Corrosion of Nickel Aluminum Bronze – Part II. Anodic Polarization and Derivation of the Mixed Potential, J. Appl. Electrochem. 34 (2004) 1241.
51. Q Lu, MM Stack and CR Wiseman, AC Impedance Spectroscopy as a Technique for Investigating Corrosion of Iron in Hot Flowing Bayer Liquors, J. Appl. Electrochem. 31 (2001) 1373.
52. JM Maciel and SML Agostinho, Use of a Rotating Cylinder Electrode in Corrosion Studies of a 90/10 Cu–Ni Alloy in 0.5M H2SO4 Media, J. Appl. Electrochem. 30 (2000) 981.
53. JM Grau and JM Bisang, Mass Transfer Studies at Rotating Cylinder Electrodes of Expanded Metal, J. Appl. Electrochem. 35 (2005) 285.
54. A Eklund and D Simonsson, Enhanced Mass Transfer to a Rotating Cylinder Electrode with Axial Flow, J. Appl. Electrochem. 18 (1988) 710.
55. KD Efird, EJ Wright, JA Boros and TG Hailey, Correlation of Steel Corrosion in Pipe Flow with Jet Impingement and Rotating Cylinder Tests, Corrosion 49 (1993) 992.
56. DC Silverman, Rotating Cylinder Electrode for Velocity Sensitivity Testing, Corrosion 40 (1984) 220.
57. DC Silverman and ME Zerr, Application of the Rotating Cylinder Electrode – E-Brite® 26-1 in Concentrated Sulfuric Acid, Corrosion 42 (1986) 633.
58. DC Silverman, Rotating Cylinder Electrode – Geometry Relationships for Prediction of Velocity-Sensitive Corrosion, Corrosion 44 (1988) 42.
59. DC Silverman, Corrosion Prediction in Complex Environments using Electrochemical Impedance Spectroscopy, Electrochimica Acta 38 (1993) 2075.
60. DC Silverman, Technical Note: On Estimating Conditions for Simulating Velocity-Sensitive Corrosion in the Rotating Cylinder Electrode , Corrosion 55 (1999) 1115.
61. DC Silverman, Technical Note: Simplified Equation for Simulating Velocity-Sensitive Corrosion in the Rotating Cylinder Electrode at Higher Reynolds Numbers, Corrosion 59 (2003) 207.
62. DC Silverman, The Rotating Cylinder Electrode for Examining Velocity-Sensitive Corrosion – A Review, Corrosion 60 (2004) 1003.
63. DC Silverman, Technical Note: Conditions for Similarity of Mass-Transfer Coefficients and Fluid Shear Stresses between the Rotating Cylinder Electrode and Pipe, Corrosion 61 (2005) 515.
64. G Wranglen, J Berendson and G Karlberg, Apparatus for Electrochemical Studies of Corrosion Processes in Flowing Systems, in Physico-Chemical Hydrodynamics, edited by B Spalding (London: Adv. Publications, 1977) 461.
65. RA Holser, G Prentice, RB Pond and R Guanti, Use of Rotating Cylinder Electrodes to Simulate Turbulent Flow Conditions in Corrosion Systems, Corrosion 46 (1990) 764.
66. TY Chen, AA Moccari and DD Macdonald, Development of Controlled Hydrodynamic Techniques for Corrosion Testing, Corrosion 48 (1992) 239.
67. S Nesic, GT Solvi and S Skjerve, Comparison of Rotating Cylinder and Loop Methods for Testing CO2 Corrosion Inhibitors, British Corrosion Journal 32 (1997) 269.
Standard Methods for using the Rotating Cylinder Electrode (RCE) in Oilfield Corrosion Studies
68. ASTM G 170, Standard Guide for Evaluating and Qualifying Oilfield and Refinery Corrosion Inhibitors in the Laboratory (2001).
69. ASTM G 185, Standard Practice for Evaluating and Qualifying Oil Field and Refinery Corrosion Inhibitors Using the Rotating Cylinder Electrode (2006).
Comments: