
Electrochemical Simulation
Back to Electrochemical Simulation Back to Applications Back to Knowledgebase HomeAfterMath Electrochemical Studio Simulation – Verification
Last Updated: 3/30/23 by Tim Paschkewitz
1Simulation Model and Engine Verification

2AfterMath Electrochemical Studio Simulation Basics
- Oxidation is to the right (unless it's to the left).
- Cathodic current is positive (unless it's negative).
- Potential goes on the x-axis (unless it goes on the y-axis), and it increases positively to the right (unless it increases negatively to the right, if it even belongs on the horizontal axis).
- Homogenous rate constant in the forward direction, for a quasi-reversible reaction, is kf (unless it's kb, unless it's k1).
- Butler-Volmer kinetics should always be used (unless you should always use Marcus-Hush).
- Elementary charge transfer reactions transfer only one electron at a time (unless they can transfer n electrons at a time).
- When it comes to α, it is only for the forward reaction and there's no corollary (unless there's a 1 - α corollary), and it's never labeled as anything but α (unless it's labeled αC or αA).
- Polarographic plotting convention is the only correct choice (unless you plot in IUPAC convention).
3Recreations of Electrochemical Methods Figures
Label | Description |
k0 | Heterogeneous electron transfer rate for a quasi-reversible or irreversible charge transfer reaction (in units of cm/s). |
k1 | Homogeneous rate constant for a quasi-reversible chemical reaction in the forward direction (1° units s-1, 2° units M-1s-1). Sometimes the label kf is used. |
k-1 | Homogeneous rate constant for a quasi-reversible chemical reaction in the backwards direction (1° units s-1, 2° units M-1s-1). Sometimes the label kb is used. |
Keq | Homogeneous rate constant for a fully reversible chemical reaction (at fast equilibrium) (unitless). This is the only condition where Keq is explicitly defined. With quasi-reversible chemical reactions, Keq is calculated as |
k | Homogeneous rate constant for an irreversible chemical reaction in (only) the forward direction (1° units s-1, 2° units M-1s-1). Sometimes the label kf is used. |


3.1Figure 13.3.1 (a - d) - ErCi Mechanism

Figure 13.3.1 (a - d). Cyclic Voltammogram for the ErCi Case as a Function of Sweep Rate.

Reaction | E0 (mV) | k0 (cm/s) | α | k1 (s-1) | k-1 (s-1) | k (s-1) |
1 | 0 | ∞ | 0.5 | - | - | - |
2 | - | - | - | - | - | 10 |
Species | C* (mM) | D (cm2/s) |
A | 1 | 10-5 |
B | 0 | 10-5 |
C | 0 | 10-5 |
Parameter | Value |
Segments | 2 |
Initial Potential (V) | 0.4 |
Vertex Potential (V) | -0.3 |
Final Potential (V) | 0.3 |
Sweep Rate (V/s) | a) 10 b) 1 c) 0.1 d) 0.01 |
Parameter | Value |
Diffusion Type | Linear (1D) |
Electrode Area (cm2) | 1 |
Temperature (°C) | 25 |
Concentration | Use Bulk Concentrations (C*) |
Double-Layer Capacitance (F) | - |
Uncompensated Resistance (Ω) | - |
3.2Figure 13.3.1 (e) - ErCi Mechanism (Dimensionless Current)

Figure 13.3.1 (e). Voltammetric Response of an ErCi Mechanism in Terms of λ and Dimensionless Current.


3.3Figure 13.3.4 - ErCiEr Mechanism

Figure 13.3.4 Cyclic Voltammogram for the ErCi Case.

Reaction | E0 (mV) | k0 (cm/s) | α | k1 (s-1) | k-1 (s-1) | k (s-1) |
1 | 0 | ∞ | 0.5 | - | - | - |
2 | - | - | - | - | - | 10 |
1 | 500 | ∞ | 0.5 | - | - | - |
Species | C* (mM) | D (cm2/s) |
A | 1 | 10-5 |
B | 0 | 10-5 |
C | 0 | 10-5 |
D | 0 | 10-5 |
Parameter | Value |
Segments | 3 |
Initial Potential (V) | 0.2 |
Upper Potential (V) | 0.8 |
Lower Potential (V) | -0.3 |
Final Potential (V) | 0.2 |
Sweep Rate (V/s) | 1 |
Parameter | Value |
Diffusion Type | Linear (1D) |
Electrode Area (cm2) | 1 |
Temperature (°C) | 25 |
Concentration | Use Bulk Concentrations (C*) |
Double-Layer Capacitance (F) | - |
Uncompensated Resistance (Ω) | - |
3.4Figure 13.3.9 - ErCi' Mechanism

Figure 13.3.9 - Cyclic Voltammograms for the ErCi' Case.

Reaction | E0 (mV) | k0 (cm/s) | α | k1 (s-1) | k-1 (s-1) | k (M-1s-1) |
1 | 0 | 1000 | 0.5 | - | - | - |
2 | - | - | - | - | - | 10 |
Species | C* (mM) | D (cm2/s) |
A | 1 | 10-5 |
B | 0 | 10-5 |
C | 1000 | 10-5 |
D | 0 | 10-5 |
Parameter | Value |
Segments | 2 |
Initial Potential (V) | 0.4 |
Vertex Potential (V) | -0.3 |
Final Potential (V) | 0.3 |
Sweep Rate (V/s) | a) 10 b) 1 c) 0.1 d) 0.01 |
Parameter | Value |
Diffusion Type | Linear (1D) |
Electrode Area (cm2) | 1 |
Temperature (°C) | 25 |
Concentration | Use Bulk Concentrations (C*) |
Double-Layer Capacitance (F) | - |
Uncompensated Resistance (Ω) | - |
3.5Figure 13.3.10 - ErCi' Mechanism (Dimensionless Current)

Figure 13.3.10 Linear Sweep Voltammogram for the ErCi' Case using Dimensionless Current.

Reaction | E0 (mV) | k0 (cm/s) | α | k1 (s-1) | k-1 (s-1) | k (M-1s-1) |
1 | 0 | ∞ | 0.5 | - | - | - |
2 | - | - | - | - | - | 38.9426 |
Species | C* (mM) | D (cm2/s) |
A | 1 | 10-5 |
B | 0 | 10-5 |
C | 1000 | 10-5 |
D | 0 | 10-5 |
Parameter | Value |
Segments | 1 |
Initial Potential (V) | 0.1926 |
Final Potential (V) | -1.027 |
Sweep Rate (V/s) | see below |
Parameter | Value |
Diffusion Type | Linear (1D) |
Electrode Area (cm2) | 1 |
Temperature (°C) | 25 |
Concentration | Use Bulk Concentrations (C*) |
Double-Layer Capacitance (F) | - |
Uncompensated Resistance (Ω) | - |
Case | λ | k (M-1s-1) | ν (V/s) |
1 | 1.00 × 10-2 | 38.9426 | 100.00 |
2 | 1.59 × 10-2 | 38.9426 | 62.89 |
3 | 2.51 × 10-2 | 38.9426 | 39.56 |
4 | 3.98 × 10-2 | 38.9426 | 24.88 |
5 | 6.30 × 10-2 | 38.9426 | 15.65 |
6 | 1.00 × 10-1 | 38.9426 | 9.84 |
7 | 1.59 × 10-1 | 38.9426 | 6.19 |
8 | 2.51 × 10-1 | 38.9426 | 3.89 |
9 | 3.98 × 10-1 | 38.9426 | 2.45 |
9 | 1.00 | 38.9426 | 0.1 |
10 | ∞ | 38.9426 | 0.001 |
3.6Figure 13.3.13 - CrEr Mechanism

Figure 13.3.13 Linear Sweep Voltammogram for the CrEr Case using Dimensionless Current.

Reaction | E0 (mV) | k0 (cm/s) | α | k1 (s-1) | k-1 (s-1) | k (M-1s-1) |
1 | - | - | - | 0.01 | 10 | - |
2 | 0 | ∞ | 0.5 | - | - |
Species | C* (mM) | D (cm2/s) |
A | 1 | 10-5 |
B | 0 | 10-5 |
C | 0 | 10-5 |
Parameter | Value |
Segments | 2 |
Initial Potential (V) | 0.1 |
Vertex Potential (V) | -0.3 |
Final Potential (V) | 0.3 |
Sweep Rate (V/s) | a) 10 b) 1 c) 0.1 d) 0.01 |
Parameter | Value |
Diffusion Type | Linear (1D) |
Electrode Area (cm2) | 1 |
Temperature (°C) | 25 |
Concentration | Use Equilibrium Concentrations [C] |
Double-Layer Capacitance (F) | - |
Uncompensated Resistance (Ω) | - |
3.7Figure 13.3.16 - ErEr Mechanism

Figure 13.3.16 Cyclic Voltammograms for the ErEr Case.

Reaction | E0 (mV) | k0 (cm/s) | α | k1 (s-1) | k-1 (s-1) | k (M-1s-1) |
1 | a) 0 b) 0 c) 0 d) 35.6 e) 75 f) 90 g) 110 h) 150 i) 200 |
100 | 0.5 | - | - | - |
2 | a) 100 b) 50 c) 0 d) 0 e) 0 f) 0 g) 0 h) 0 i) 0 |
100 | 0.5 | - | - | - |
Species | C* (mM) | D (cm2/s) |
A | 1 | 10-5 |
B | 0 | 10-5 |
C | 0 | 10-5 |
Parameter | Value |
Segments | 2 |
Initial Potential (V) | 0.5 |
Vertex Potential (V) | -0.2 |
Final Potential (V) | 0.5 |
Sweep Rate (V/s) | 0.1 |
Parameter | Value |
Diffusion Type | Linear (1D) |
Electrode Area (cm2) | 1 |
Temperature (°C) | 25 |
Concentration | Use Bulk Concentrations (C*) |
Double-Layer Capacitance (F) | - |
Uncompensated Resistance (Ω) | - |
3.8Figure 13.3.20 - ErEq Mechanism

Figure 13.3.20 Cyclic Voltammograms for the ErEq Case.

Reaction | E0 (mV) | k0 (cm/s) | α | k1 (s-1) | k-1 (s-1) | k (M-1s-1) |
1 | 0 | ∞ | 0.5 | - | - | - |
2 | 0 | 0.01 | 0.5 | - | - | - |
Species | C* (mM) | D (cm2/s) |
A | 1 | 10-5 |
B | 0 | 10-5 |
C | 0 | 10-5 |
Parameter | Value |
Segments | 2 |
Initial Potential (V) | 0.3 |
Vertex Potential (V) | -0.3 |
Final Potential (V) | 0.3 |
Sweep Rate (V/s) | a) 1 b) 10 c) 100 d) 1000 |
Parameter | Value |
Diffusion Type | Linear (1D) |
Electrode Area (cm2) | 1 |
Temperature (°C) | 25 |
Concentration | Use Bulk Concentrations (C*) |
Double-Layer Capacitance (F) | - |
Uncompensated Resistance (Ω) | - |
3.9Figure 13.3.21 - ErEq Mechanism

Figure 13.3.21 Cyclic Voltammograms for the ErEq Case.

Reaction | E0 (mV) | k0 (cm/s) | α | k1 (s-1) | k-1 (s-1) | k (M-1s-1) |
1 | 0 | ∞ | 0.5 | - | - | - |
2 | 0.15 | 0.01 | 0.5 | - | - | - |
Species | C* (mM) | D (cm2/s) |
A | 1 | 10-5 |
B | 0 | 10-5 |
C | 0 | 10-5 |
Parameter | Value |
Segments | 2 |
Initial Potential (V) | 0.4 |
Vertex Potential (V) | -0.4 |
Final Potential (V) | 0.4 |
Sweep Rate (V/s) | a) 1 b) 10 c) 100 d) 1000 |
Parameter | Value |
Diffusion Type | Linear (1D) |
Electrode Area (cm2) | 1 |
Temperature (°C) | 25 |
Concentration | Use Bulk Concentrations (C*) |
Double-Layer Capacitance (F) | - |
Uncompensated Resistance (Ω) | - |
3.10Figure 13.3.22 - EqEr Mechanism

Figure 13.3.22 Cyclic Voltammograms for the EqEr Case.

Reaction | E0 (mV) | k0 (cm/s) | α | k1 (s-1) | k-1 (s-1) | k (M-1s-1) |
1 | 0 | 0.01 | 0.5 | - | - | - |
2 | 0 | ∞ | 0.5 | - | - | - |
Species | C* (mM) | D (cm2/s) |
A | 1 | 10-5 |
B | 0 | 10-5 |
C | 0 | 10-5 |
Parameter | Value |
Segments | 2 |
Initial Potential (V) | 0.3 |
Initial Potential (V) | -0.3 |
Final Potential (V) | 0.3 |
Sweep Rate (V/s) | a) 1 b) 10 c) 100 d) 1000 |
Parameter | Value |
Diffusion Type | Linear (1D) |
Electrode Area (cm2) | 1 |
Temperature (°C) | 25 |
Concentration | Use Bulk Concentrations (C*) |
Double-Layer Capacitance (F) | - |
Uncompensated Resistance (Ω) | - |
3.11Figure 13.3.25 - ErCiEr Mechanism

Figure 13.3.25 Cyclic Voltammograms for the ErCiEr Case.

Reaction | E0 (V) | k0 (cm/s) | α | k1 (s-1) | k-1 (s-1) | k (M-1s-1) |
1 | -0.44 | ∞ | 0.5 | - | - | - |
2 | - | - | - | - | - | |
3 | -0.2 | ∞ | 0.5 | - | - | - |
k (s-1) | λ | f (V-1) | ν (V/s) |
0 | 0 | 38.922 | 10 |
19.461 | 0.05 | 38.922 | 10 |
155.687 | 0.4 | 38.922 | 10 |
778.435 | 2 | 38.922 | 10 |
Species | C* (mM) | D (cm2/s) |
A | 1 | 10-5 |
B | 0 | 10-5 |
C | 0 | 10-5 |
D | 0 | 10-5 |
Parameter | Value |
Segments | 3 |
Initial Potential (V) | 0 |
Upper Potential (V) | 0 |
Lower Potential (V) | -0.6 |
Final Potential (V) | -0.3 |
Sweep Rate (V/s) | 10 |
Parameter | Value |
Diffusion Type | Linear (1D) |
Electrode Area (cm2) | 1 |
Temperature (°C) | 25 |
Concentration | Use Bulk Concentrations (C*) |
Double-Layer Capacitance (F) | - |
Uncompensated Resistance (Ω) | - |