# | Description | Price in USD | |
---|---|---|---|
For use with Pine Research WaveNeuro and UNC UEI Systems | |||
[NEC-HS2] |
Headstage Amplifier 36" Cable Kit |
||
Headstage Kit includes the items listed below | |||
RRHC0136-T |
Headstage Amplifier Cable |
||
AC01HS1 |
FSCV Headstage Amplifier NOTE: A working electrode driven systems means the waveform is applied to the working electrode, which is then later software subtracted. Such a design is consistent with the general FSCV research community. |
||
AC01HC0325-5 |
Microelectrode-Headstage Coupler - 2.5" |
This Headstage Amplifier Cable kit is designed for use with the Pine Research WaveNeuro Fast-Scan Cyclic Voltammetry Potentiostat System. The kit includes the DB-25 headstage cable with CP-305 bipolar stimulation connector, overall 36" long, five replaceable 2.5" microelectrode-headstage couplers, and 200 nA/V, working driven headstage amplifier. The modular design of the Pine Research headstage kits allows researchers to diagnose cable issues in a piecewise manner. Say goodbye to that box of headstages with questionable behaviors!
Pine Research currently offers working driven headstage amplifiers. In a working driven system, the reference electrode is grounded. The FSCV potential waveform (ramp) is connected to the non-inverting input of the operational amplifier, while the working electrode is connected to the inverting input. In this arrangement, the voltage at the microelectrode will follow the ramp applied to the inverting input.1
In this two-electrode configuration, current arising from electron-transfer reactions, such as the oxidation of dopamine, passes between reference and working electrodes. The measured current passes through the headstage amplifer, where it is converted to voltage, and sums with the the ramp voltage at the inverting input. Mathematically,
where is the output voltage, is input current, is feedback resistor (gain), and is the CV ramp voltage. By rearrangement, the signal voltage (proportional to the current across the feedback resistor in the headstage) is then
HDCV software, which supports the WaveNeuro FSCV Potentiostat system, performs software subtraction of the ramp according to this relationship, resulting in only the true differential current measurement.1
(1) Takmakov, P.; McKinney, C. J.; Carelli, R. M.; Wightman, R. M. Instrumentation for Fast-Scan Cyclic Voltammetry Combined with Electrophysiology for Behavioral Experiments in Freely Moving Animals. Rev. Sci. Instrum. 2011, 82, 74302.
R.M. Wightman et. al. have reported on this topic in depth If, after reviewing this document, you have any questions about our neuroelectrochemical research products, please do not hesitate to contact us.
All specifications are subject to change without notice.
Document # | Title |
---|---|
DRU10120 |
WaveNeuro Fast Scan Cylic Voltammetry Potentiostat System User Guide |
Contact us with any questions or support requests by phone or e-mail.